NEW FUNCTION

Function Expression :

\[f(x)=\frac{x^2-3x}{x^2+1} \]

Domain

\[]-\infty ;+\infty [ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = 1 \]
\[\lim_{x \rightarrow+\infty}f(x) = 1 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- \frac{2 x \left(x^{2} - 3 x\right)}{\left(x^{2} + 1\right)^{2}} + \frac{2 x - 3}{x^{2} + 1} \]
\[f^{\,\prime}(x)=\frac{3 x^{2} + 2 x - 3}{x^{4} + 2 x^{2} + 1} \]
\[ \]

Integral

\[F(x) = x - \frac{3 \log{\left(x^{2} + 1 \right)}}{2} - \operatorname{atan}{\left(x \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0028 seconds