NEW FUNCTION

Function Expression :

\[f(x)=\frac{x}{ln x} \]

Domain

\[\left]0, 1\right[ \cup \left]1, \infty\right[ \]

Limits

\[\lim_{x \overset{>}{\rightarrow0} }f(x) = 0 \]
\[\lim_{x \overset{<}{\rightarrow1} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow1} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{1}{\log{\left(x \right)}} - \frac{1}{\log{\left(x \right)}^{2}} \]
\[f^{\,\prime}(x)=\frac{\log{\left(x \right)} - 1}{\log{\left(x \right)}^{2}} \]
\[ \]

Integral

\[F(x) = \operatorname{Ei}{\left(2 \log{\left(x \right)} \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0126 seconds