NEW FUNCTION
Function Expression :
\[f(x)=x^2-4x+3+6.ln(x-2
) \]
Domain
\[\left]2, \infty\right[ \]
Limits
\[\lim_{x \overset{>}{\rightarrow2} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=2 x - 4 + \frac{6}{x - 2} \]
\[f^{\,\prime}(x)=2 x - 4 + \frac{6}{x - 2} \]
\[f^{\,\prime}(x)=\frac{2 \left(x \left(x - 2\right) - 2 x + 7\right)}{x - 2} \]
Integral
\[F(x) = \frac{x^{3}}{3} - 2 x^{2} + 6 x \log{\left(x - 2 \right)} - 3 x - 12 \log{\left(x - 2 \right)} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0135 seconds