NEW FUNCTION
Function Expression :
\[f(x)=\frac{x^2-x-4}{x-2} \]
Domain
\[\left]-\infty, 2\right[ \cup \left]2, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = -\infty \]
\[\lim_{x \overset{<}{\rightarrow2} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow2} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=\frac{2 x - 1}{x - 2} - \frac{x^{2} - x - 4}{\left(x - 2\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{x^{2} - 4 x + 6}{x^{2} - 4 x + 4} \]
\[ \]
Integral
\[F(x) = \frac{x^{2}}{2} + x - 2 \log{\left(x - 2 \right)} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0138 seconds