NEW FUNCTION

Function Expression :

\[f(x)=\frac{-x^2+2x}{(x+1 )^2} \]

Domain

\[\left]-\infty, -1\right[ \cup \left]-1, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = -1 \]
\[\lim_{x \overset{<}{\rightarrow-1} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow-1} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = -1 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{2 - 2 x}{\left(x + 1\right)^{2}} + \frac{\left(- 2 x - 2\right) \left(- x^{2} + 2 x\right)}{\left(x + 1\right)^{4}} \]
\[f^{\,\prime}(x)=\frac{2 \cdot \left(1 - 2 x\right)}{x^{3} + 3 x^{2} + 3 x + 1} \]
\[ \]

Integral

\[F(x) = - x + 4 \log{\left(x + 1 \right)} + \frac{3}{x + 1} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0135 seconds