NEW FUNCTION

Function Expression :

\[f(x)=\frac{x^2}{2}(1+\sqrt{x+4} ) \]

Domain

\[\left[-4, \infty\right[ \]

Limits

\[\lim_{x \overset{>}{\rightarrow-4} }f(x) = 8 \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{x^{2}}{4 \sqrt{x + 4}} + x \left(\sqrt{x + 4} + 1\right) \]
\[f^{\,\prime}(x)=\frac{x \left(5 x + 4 \sqrt{x + 4} + 16\right)}{4 \sqrt{x + 4}} \]
\[ \]

Integral

\[F(x) = \frac{x^{3}}{6} + \frac{\left(x + 4\right)^{\frac{7}{2}}}{7} - \frac{8 \left(x + 4\right)^{\frac{5}{2}}}{5} + \frac{16 \left(x + 4\right)^{\frac{3}{2}}}{3} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0175 seconds