NEW FUNCTION

Function Expression :

\[f(x)=\frac{x}{e^x-1} \]

Domain

\[\left]-\infty, 0\right[ \cup \left]0, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \overset{<}{\rightarrow0} }f(x) = 1 \]
\[\lim_{x \overset{>}{\rightarrow0} }f(x) = 1 \]
\[\lim_{x \rightarrow+\infty}f(x) = 0 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- \frac{x e^{x}}{\left(e^{x} - 1\right)^{2}} + \frac{1}{e^{x} - 1} \]
\[f^{\,\prime}(x)=\frac{- x e^{x} + e^{x} - 1}{\left(1 - e^{x}\right)^{2}} \]
\[ \]

Integral

\[F(x) = \int \frac{x}{e^{x} - 1}\, dx \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0120 seconds