NEW FUNCTION
Function Expression :
\[f(x)=\sqrt{2x^2-3x+1} \]
Domain
\[\left]-\infty, \frac{1}{2}\right] \cup \left[1, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \overset{<}{\rightarrow\frac{1}{2}} }f(x) = 0 \]
\[\lim_{x \overset{>}{\rightarrow1} }f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=\frac{2 x - \frac{3}{2}}{\sqrt{2 x^{2} - 3 x + 1}} \]
\[f^{\,\prime}(x)=\frac{4 x - 3}{2 \sqrt{2 x^{2} - 3 x + 1}} \]
\[ \]
Integral
\[F(x) = \int \sqrt{2 x^{2} - 3 x + 1}\, dx \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0106 seconds