NEW FUNCTION

Function Expression :

\[f(x)=\frac{e(x )-1}{xe(x )+1} \]

Domain

\[]-\infty ;+\infty [ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = 0 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- \frac{2 e x \left(e x - 1\right)}{\left(e x x + 1\right)^{2}} + \frac{e}{e x x + 1} \]
\[f^{\,\prime}(x)=\frac{e \left(e x^{2} - 2 x \left(e x - 1\right) + 1\right)}{\left(e x^{2} + 1\right)^{2}} \]
\[ \]

Integral

\[F(x) = \frac{\log{\left(x^{2} + e^{-1} \right)}}{2} - \frac{\operatorname{atan}{\left(x e^{\frac{1}{2}} \right)}}{e^{\frac{1}{2}}} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0027 seconds