NEW FUNCTION
Function Expression :
\[f(x)=ln(1+\sqrt{x}
) \]
Domain
\[\left[0, \infty\right[ \]
Limits
\[\lim_{x \overset{>}{\rightarrow0} }f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=\frac{1}{2 \sqrt{x} \left(\sqrt{x} + 1\right)} \]
\[f^{\,\prime}(x)=\frac{1}{2 \left(\sqrt{x} + x\right)} \]
\[ \]
Integral
\[F(x) = \sqrt{x} + x \log{\left(\sqrt{x} + 1 \right)} - \frac{x}{2} - \log{\left(\sqrt{x} + 1 \right)} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0033 seconds