NEW FUNCTION
Function Expression :
\[f(x)=\frac{sin x}{2-cos x} \]
Domain
\[]-\infty ;+\infty [ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = \left\langle -1, 1\right\rangle \]
\[\lim_{x \rightarrow+\infty}f(x) = \left\langle -1, 1\right\rangle \]
\[ \]
Derivate
\[f^{\,\prime}(x)=\frac{\cos{\left(x \right)}}{2 - \cos{\left(x \right)}} - \frac{\sin^{2}{\left(x \right)}}{\left(2 - \cos{\left(x \right)}\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{- 5 \cos{\left(x \right)} + \cos{\left(2 x \right)} + 3}{\left(\cos{\left(x \right)} - 2\right)^{3}} \]
\[ \]
Integral
\[F(x) = \log{\left(\cos{\left(x \right)} - 2 \right)} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0186 seconds