NEW FUNCTION
Function Expression :
\[f(x)=\frac{x^{2+1}}{x} \]
Domain
\[\left]-\infty, 0\right[ \cup \left]0, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \overset{<}{\rightarrow0} }f(x) = 0 \]
\[\lim_{x \overset{>}{\rightarrow0} }f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=- \frac{x^{1 + 2}}{x^{2}} + \frac{x^{1 + 2} \cdot \left(1 + 2\right)}{x^{2}} \]
\[f^{\,\prime}(x)=2 x \]
\[ \]
Integral
\[F(x) = \frac{x^{3}}{3} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0036 seconds