NEW FUNCTION
Function Expression :
\[f(x)=x+\frac{1}{x}-\frac{ln x}{x} \]
Domain
\[\left]0, \infty\right[ \]
Limits
\[\lim_{x \overset{>}{\rightarrow0} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=1 + \frac{\log{\left(x \right)}}{x^{2}} - \frac{2}{x^{2}} \]
\[f^{\,\prime}(x)=\frac{x^{2} + \log{\left(x \right)} - 2}{x^{2}} \]
\[ \]
Integral
\[F(x) = \frac{x^{2}}{2} - \begin{cases} \frac{\log{\left(x \right)}^{2}}{2} & \text{for}\: \left|{x}\right| < 1 \\\frac{\log{\left(\frac{1}{x} \right)}^{2}}{2} & \text{for}\: \frac{1}{\left|{x}\right|} < 1 \\{G_{3, 3}^{3, 0}\left(\begin{matrix} & 1, 1, 1 \\0, 0, 0 & \end{matrix} \middle| {x} \right)} + {G_{3, 3}^{0, 3}\left(\begin{matrix} 1, 1, 1 & \\ & 0, 0, 0 \end{matrix} \middle| {x} \right)} & \text{otherwise} \end{cases} + \log{\left(x \right)} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0261 seconds