NEW FUNCTION

Function Expression :

\[f(x)=ln(2x^2-4x ) \]

Domain

\[\left]-\infty, 0\right[ \cup \left]2, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \overset{<}{\rightarrow0} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow2} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{4 x - 4}{2 x^{2} - 4 x} \]
\[f^{\,\prime}(x)=\frac{2 \left(x - 1\right)}{x \left(x - 2\right)} \]
\[ \]

Integral

\[F(x) = x \log{\left(x^{2} - 2 x \right)} - 2 x + x \log{\left(2 \right)} - 2 \log{\left(x - 2 \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0025 seconds