NEW FUNCTION

Function Expression :

\[f(x)=\frac{1}{1+e^x}-x \]

Domain

\[]-\infty ;+\infty [ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = -\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=-1 - \frac{e^{x}}{\left(e^{x} + 1\right)^{2}} \]
\[f^{\,\prime}(x)=-1 - \frac{1}{4 \cosh^{2}{\left(\frac{x}{2} \right)}} \]
\[f^{\,\prime}(x)=\frac{- 4 \cosh^{2}{\left(\frac{x}{2} \right)} - 1}{4 \cosh^{2}{\left(\frac{x}{2} \right)}} \]

Integral

\[F(x) = - \frac{x^{2}}{2} + x - \log{\left(e^{x} + 1 \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0340 seconds