NEW FUNCTION

Function Expression :

\[f(x)=2x+ln(1-\frac{1}{e^x} ) \]

Domain

\[\left]0, \infty\right[ \]

Limits

\[\lim_{x \overset{>}{\rightarrow0} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=2 + \frac{e^{- x}}{1 - 1 \cdot \frac{1}{e^{x}}} \]
\[f^{\,\prime}(x)=\frac{2 e^{x} - 1}{e^{x} - 1} \]
\[ \]

Integral

\[F(x) = x \log{\left(1 - e^{- x} \right)} + \int \frac{x \left(2 e^{x} - 3\right)}{e^{x} - 1}\, dx \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0312 seconds