NEW FUNCTION

Function Expression :

\[f(x)=\sqrt{x^{2-4}} \]

Domain

\[\left]-\infty, 0\right[ \cup \left]0, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = 0 \]
\[\lim_{x \overset{<}{\rightarrow0} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow0} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 0 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{x \left(-4 + 2\right) \sqrt{x^{-4 + 2}}}{2 x^{2}} \]
\[f^{\,\prime}(x)=- \frac{\sqrt{\frac{1}{x^{2}}}}{x} \]
\[ \]

Integral

\[F(x) = \log{\left(\frac{1}{\sqrt{x^{-4 + 2}}} \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0038 seconds