NEW FUNCTION

Function Expression :

\[f(x)=\frac{10x}{7x+10} \]

Domain

\[\left]-\infty, - \frac{10}{7}\right[ \cup \left]- \frac{10}{7}, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = \frac{10}{7} \]
\[\lim_{x \overset{<}{\rightarrow- \frac{10}{7}} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow- \frac{10}{7}} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = \frac{10}{7} \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- \frac{70 x}{\left(7 x + 10\right)^{2}} + \frac{10}{7 x + 10} \]
\[f^{\,\prime}(x)=\frac{100}{\left(7 x + 10\right)^{2}} \]
\[ \]

Integral

\[F(x) = \frac{10 x}{7} - \frac{100 \log{\left(7 x + 10 \right)}}{49} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0172 seconds