NEW FUNCTION

Function Expression :

\[f(x)=\frac{(x^3-3x )}{x^2-1} \]

Domain

\[\left]-\infty, -1\right[ \cup \left]-1, 1\right[ \cup \left]1, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = -\infty \]
\[\lim_{x \overset{<}{\rightarrow-1} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow-1} }f(x) = -\infty \]
\[\lim_{x \overset{<}{\rightarrow1} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow1} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- \frac{2 x \left(x^{3} - 3 x\right)}{\left(x^{2} - 1\right)^{2}} + \frac{3 x^{2} - 3}{x^{2} - 1} \]
\[f^{\,\prime}(x)=\frac{x^{4} + 3}{x^{4} - 2 x^{2} + 1} \]
\[ \]

Integral

\[F(x) = \frac{x^{2}}{2} - \log{\left(x^{2} - 1 \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0518 seconds