NEW FUNCTION

Function Expression :

\[f(x)=\frac{ln x}{x^2} \]

Domain

\[\left]0, \infty\right[ \]

Limits

\[\lim_{x \overset{>}{\rightarrow0} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 0 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{1}{x x^{2}} - \frac{2 \log{\left(x \right)}}{x^{3}} \]
\[f^{\,\prime}(x)=\frac{1 - 2 \log{\left(x \right)}}{x^{3}} \]
\[ \]

Integral

\[F(x) = - \frac{\log{\left(x \right)}}{x} - \frac{1}{x} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0650 seconds