NEW FUNCTION

Function Expression :

\[f(x)=\frac{2x-2}{x+2} \]

Domain

\[\left]-\infty, -2\right[ \cup \left]-2, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = 2 \]
\[\lim_{x \overset{<}{\rightarrow-2} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow-2} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 2 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{2}{x + 2} - \frac{2 x - 2}{\left(x + 2\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{6}{\left(x + 2\right)^{2}} \]
\[ \]

Integral

\[F(x) = 2 x - 6 \log{\left(x + 2 \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0155 seconds