NEW FUNCTION
Function Expression :
\[f(x)=ln(x^2-4
) \]
Domain
\[\left]-\infty, -2\right[ \cup \left]2, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \overset{<}{\rightarrow-2} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow2} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=\frac{2 x}{x^{2} - 4} \]
\[f^{\,\prime}(x)=\frac{2 x}{x^{2} - 4} \]
\[ \]
Integral
\[F(x) = x \log{\left(x^{2} - 4 \right)} - 2 x + 4 \log{\left(x + 2 \right)} - 2 \log{\left(x^{2} - 4 \right)} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0184 seconds