NEW FUNCTION

Function Expression :

\[f(x)=x-3+\frac{2}{x-4} \]

Domain

\[\left]-\infty, 4\right[ \cup \left]4, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = -\infty \]
\[\lim_{x \overset{<}{\rightarrow4} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow4} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=1 - \frac{2}{\left(x - 4\right)^{2}} \]
\[f^{\,\prime}(x)=1 - \frac{2}{\left(x - 4\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{\left(x - 4\right)^{2} - 2}{\left(x - 4\right)^{2}} \]

Integral

\[F(x) = \frac{x^{2}}{2} - 3 x + 2 \log{\left(x - 4 \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0028 seconds