NEW FUNCTION

Function Expression :

\[f(x)=\frac{1}{x}e^{x-1} \]

Domain

\[\left]-\infty, 0\right[ \cup \left]0, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = 0 \]
\[\lim_{x \overset{<}{\rightarrow0} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow0} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{e^{x - 1}}{x} - \frac{e^{x - 1}}{x^{2}} \]
\[f^{\,\prime}(x)=\frac{\left(x - 1\right) e^{x - 1}}{x^{2}} \]
\[ \]

Integral

\[F(x) = \frac{\operatorname{Ei}{\left(x \right)}}{e} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0048 seconds