NEW FUNCTION

Function Expression :

\[f(x)=ln(x^3-x ) \]

Domain

\[\left]-1, 0\right[ \cup \left]1, \infty\right[ \]

Limits

\[\lim_{x \overset{>}{\rightarrow-1} }f(x) = -\infty \]
\[\lim_{x \overset{<}{\rightarrow0} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow1} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{3 x^{2} - 1}{x^{3} - x} \]
\[f^{\,\prime}(x)=\frac{3 x^{2} - 1}{x \left(x^{2} - 1\right)} \]

Integral

\[F(x) = x \log{\left(x^{3} - x \right)} - 3 x - \log{\left(x - 1 \right)} + \log{\left(x + 1 \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0024 seconds