NEW FUNCTION

Function Expression :

\[f(x)=1+\frac{x}{1+e^x} \]

Domain

\[]-\infty ;+\infty [ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 1 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- \frac{x e^{x}}{\left(e^{x} + 1\right)^{2}} + \frac{1}{e^{x} + 1} \]
\[f^{\,\prime}(x)=\frac{- x e^{x} + e^{x} + 1}{\left(e^{x} + 1\right)^{2}} \]
\[ \]

Integral

\[F(x) = \int \frac{x + e^{x} + 1}{e^{x} + 1}\, dx \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0042 seconds