NEW FUNCTION

Function Expression :

\[f(x)=\frac{2(1-ln x )}{x} \]

Domain

\[\left]0, \infty\right[ \]

Limits

\[\lim_{x \overset{>}{\rightarrow0} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 0 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- \frac{2 \cdot \left(1 - \log{\left(x \right)}\right)}{x^{2}} - \frac{2}{x^{2}} \]
\[f^{\,\prime}(x)=\frac{2 \left(\log{\left(x \right)} - 2\right)}{x^{2}} \]
\[ \]

Integral

\[F(x) = - \left(\log{\left(x \right)} - 1\right)^{2} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0039 seconds