NEW FUNCTION
Function Expression :
\[f(x)=\sqrt{x^2+8x} \]
Domain
\[\left]-\infty, -8\right] \cup \left[0, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \overset{<}{\rightarrow-8} }f(x) = 0 \]
\[\lim_{x \overset{>}{\rightarrow0} }f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=\frac{x + 4}{\sqrt{x^{2} + 8 x}} \]
\[f^{\,\prime}(x)=\frac{x + 4}{\sqrt{x \left(x + 8\right)}} \]
\[ \]
Integral
\[F(x) = \int \sqrt{x^{2} + 8 x}\, dx \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0027 seconds