NEW FUNCTION

Function Expression :

\[f(x)=\frac{1}{3-x}+\sqrt{2x-3} \]

Domain

\[\left[\frac{3}{2}, 3\right[ \cup \left]3, \infty\right[ \]

Limits

\[\lim_{x \overset{>}{\rightarrow\frac{3}{2}} }f(x) = \frac{2}{3} \]
\[\lim_{x \overset{<}{\rightarrow3} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow3} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{1}{\sqrt{2 x - 3}} + \frac{1}{\left(3 - x\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{1}{\sqrt{2 x - 3}} + \frac{1}{\left(x - 3\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{\left(x - 3\right)^{2} + \sqrt{2 x - 3}}{\left(x - 3\right)^{2} \sqrt{2 x - 3}} \]

Integral

\[F(x) = \frac{\left(2 x - 3\right)^{\frac{3}{2}}}{3} - \log{\left(3 - x \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0025 seconds