NEW FUNCTION
Function Expression :
\[f(x)=x-1-\frac{1}{x}+\frac{1}{x^2} \]
Domain
\[\left]-\infty, 0\right[ \cup \left]0, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = -\infty \]
\[\lim_{x \overset{<}{\rightarrow0} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow0} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=1 - \frac{2}{x x^{2}} + \frac{1}{x^{2}} \]
\[f^{\,\prime}(x)=\frac{x^{3} + x - 2}{x^{3}} \]
\[ \]
Integral
\[F(x) = \frac{x^{2}}{2} - x - \log{\left(x \right)} - \frac{1}{x} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0025 seconds