NEW FUNCTION
Function Expression :
\[f(x)=ln(1-3x
) \]
Domain
\[\left]-\infty, \frac{1}{3}\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \overset{<}{\rightarrow\frac{1}{3}} }f(x) = -\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=- \frac{3}{\left(-1\right) 3 x + 1} \]
\[f^{\,\prime}(x)=\frac{3}{3 x - 1} \]
\[ \]
Integral
\[F(x) = x \log{\left(1 - 3 x \right)} - x - \frac{\log{\left(1 - 3 x \right)}}{3} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0890 seconds