NEW FUNCTION

Function Expression :

\[f(x)=ln(1-3x ) \]

Domain

\[\left]-\infty, \frac{1}{3}\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \overset{<}{\rightarrow\frac{1}{3}} }f(x) = -\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- \frac{3}{\left(-1\right) 3 x + 1} \]
\[f^{\,\prime}(x)=\frac{3}{3 x - 1} \]
\[ \]

Integral

\[F(x) = x \log{\left(1 - 3 x \right)} - x - \frac{\log{\left(1 - 3 x \right)}}{3} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0890 seconds