NEW FUNCTION

Function Expression :

\[f(x)=-2\frac{1}{(x+1 )}+ln(\frac{x}{x+1} ) \]

Domain

\[\left]-\infty, -1\right[ \cup \left]0, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = 0 \]
\[\lim_{x \overset{<}{\rightarrow-1} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow0} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 0 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{2}{\left(x + 1\right)^{2}} + \frac{\left(x + 1\right) \left(- \frac{x}{\left(x + 1\right)^{2}} + \frac{1}{x + 1}\right)}{x} \]
\[f^{\,\prime}(x)=\frac{3 x + 1}{x \left(x + 1\right)^{2}} \]
\[ \]

Integral

\[F(x) = x \log{\left(\frac{x}{x + 1} \right)} - \log{\left(x + 1 \right)} - 2 \log{\left(x + 1 \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0038 seconds