NEW FUNCTION

Function Expression :

\[f(x)=\frac{x^3-3x+1}{(x+1 )^2}-x-2 \]

Domain

\[\left]-\infty, -1\right[ \cup \left]-1, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = -4 \]
\[\lim_{x \overset{<}{\rightarrow-1} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow-1} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = -4 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{\left(- 2 x - 2\right) \left(x^{3} - 3 x + 1\right)}{\left(x + 1\right)^{4}} - 1 + \frac{3 x^{2} - 3}{\left(x + 1\right)^{2}} \]
\[f^{\,\prime}(x)=- \frac{6}{x^{3} + 3 x^{2} + 3 x + 1} \]
\[ \]

Integral

\[F(x) = - 4 x - \frac{3}{x + 1} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0038 seconds