NEW FUNCTION

Function Expression :

\[f(x)=x+2\frac{1}{x^2+2} \]

Domain

\[]-\infty ;+\infty [ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- \frac{4 x}{\left(x^{2} + 2\right)^{2}} + 1 \]
\[f^{\,\prime}(x)=- \frac{4 x}{\left(x^{2} + 2\right)^{2}} + 1 \]
\[f^{\,\prime}(x)=\frac{- 4 x + \left(x^{2} + 2\right)^{2}}{\left(x^{2} + 2\right)^{2}} \]

Integral

\[F(x) = \frac{x^{2}}{2} + \sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} x}{2} \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0031 seconds