NEW FUNCTION

Function Expression :

\[f(x)=\frac{2x^2-7x+5}{x+3} \]

Domain

\[\left]-\infty, -3\right[ \cup \left]-3, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = -\infty \]
\[\lim_{x \overset{<}{\rightarrow-3} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow-3} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{4 x - 7}{x + 3} - \frac{2 x^{2} - 7 x + 5}{\left(x + 3\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{2 \left(x^{2} + 6 x - 13\right)}{x^{2} + 6 x + 9} \]
\[ \]

Integral

\[F(x) = x^{2} - 13 x + 44 \log{\left(x + 3 \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0029 seconds