NEW FUNCTION
Function Expression :
\[f(x)=\frac{2x^2-7x+5}{x+3} \]
Domain
\[\left]-\infty, -3\right[ \cup \left]-3, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = -\infty \]
\[\lim_{x \overset{<}{\rightarrow-3} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow-3} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=\frac{4 x - 7}{x + 3} - \frac{2 x^{2} - 7 x + 5}{\left(x + 3\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{2 \left(x^{2} + 6 x - 13\right)}{x^{2} + 6 x + 9} \]
\[ \]
Integral
\[F(x) = x^{2} - 13 x + 44 \log{\left(x + 3 \right)} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0029 seconds