NEW FUNCTION
Function Expression :
\[f(x)=\frac{2x^2-2x-1}{x^2} \]
Domain
\[\left]-\infty, 0\right[ \cup \left]0, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = 2 \]
\[\lim_{x \overset{<}{\rightarrow0} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow0} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 2 \]
\[ \]
Derivate
\[f^{\,\prime}(x)=\frac{4 x - 2}{x^{2}} - \frac{2 \cdot \left(2 x^{2} - 2 x - 1\right)}{x^{3}} \]
\[f^{\,\prime}(x)=\frac{2 \left(x + 1\right)}{x^{3}} \]
\[ \]
Integral
\[F(x) = 2 x - 2 \log{\left(x \right)} + \frac{1}{x} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0144 seconds