NEW FUNCTION

Function Expression :

\[f(x)=ln(\sqrt{1+9x^2}+3x ) \]

Domain

\[\left]-\infty, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{\frac{9 x}{\sqrt{9 x^{2} + 1}} + 3}{3 x + \sqrt{9 x^{2} + 1}} \]
\[f^{\,\prime}(x)=\frac{3}{\sqrt{9 x^{2} + 1}} \]
\[ \]

Integral

\[F(x) = x \log{\left(3 x + \sqrt{9 x^{2} + 1} \right)} - \frac{\sqrt{9 x^{2} + 1}}{3} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0039 seconds