NEW FUNCTION

Function Expression :

\[f(x)=\frac{x^3-1}{(x-2 )^2} \]

Domain

\[\left]-\infty, 2\right[ \cup \left]2, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = -\infty \]
\[\lim_{x \overset{<}{\rightarrow2} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow2} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{3 x^{2}}{\left(x - 2\right)^{2}} + \frac{\left(4 - 2 x\right) \left(x^{3} - 1\right)}{\left(x - 2\right)^{4}} \]
\[f^{\,\prime}(x)=\frac{- 2 x^{3} + 3 x^{2} \left(x - 2\right) + 2}{\left(x - 2\right)^{3}} \]
\[ \]

Integral

\[F(x) = \frac{x^{2}}{2} + 4 x + 12 \log{\left(x - 2 \right)} - \frac{7}{x - 2} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0219 seconds