NEW FUNCTION
Function Expression :
\[f(x)=-x+1+\frac{1}{x} \]
Domain
\[\left]-\infty, 0\right[ \cup \left]0, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \overset{<}{\rightarrow0} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow0} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = -\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=-1 - \frac{1}{x^{2}} \]
\[f^{\,\prime}(x)=\frac{- x^{2} - 1}{x^{2}} \]
Integral
\[F(x) = - \frac{x^{2}}{2} + x + \log{\left(x \right)} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0637 seconds