NEW FUNCTION

Function Expression :

\[f(x)=-x+2-x(ln x )^2 \]

Domain

\[\left]0, \infty\right[ \]

Limits

\[\lim_{x \overset{>}{\rightarrow0} }f(x) = 2 \]
\[\lim_{x \rightarrow+\infty}f(x) = -\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- \log{\left(x \right)}^{2} - 2 \log{\left(x \right)} - 1 \]
\[f^{\,\prime}(x)=- \log{\left(x \right)}^{2} - 2 \log{\left(x \right)} - 1 \]
\[ \]

Integral

\[F(x) = - \frac{x^{2} \log{\left(x \right)}^{2}}{2} + \frac{x^{2} \log{\left(x \right)}}{2} - \frac{3 x^{2}}{4} + 2 x \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0181 seconds