NEW FUNCTION

Function Expression :

f(x)=x1(x+3)(x5)f(x)=\frac{\sqrt{x-1}}{\sqrt{(x+3 )(x-5 )}}

Domain

[5,[\left[5, \infty\right[

Limits

limx5>f(x)=+\lim_{x \overset{>}{\rightarrow5} }f(x) = +\infty
limx+f(x)=0\lim_{x \rightarrow+\infty}f(x) = 0

Derivate

f(x)=12(x5)(x+3)x1x1(x1)(x5)(x+3)(x5)(x+3)f^{\,\prime}(x)=\frac{1}{2 \sqrt{\left(x - 5\right) \left(x + 3\right)} \sqrt{x - 1}} - \frac{\sqrt{x - 1} \left(x - 1\right)}{\sqrt{\left(x - 5\right) \left(x + 3\right)} \left(x - 5\right) \left(x + 3\right)}
f(x)=(x5)(x+3)((x5)(x+3)2(x1)2)(x5)2x1(x+3)2f^{\,\prime}(x)=\frac{\sqrt{\left(x - 5\right) \left(x + 3\right)} \left(\frac{\left(x - 5\right) \left(x + 3\right)}{2} - \left(x - 1\right)^{2}\right)}{\left(x - 5\right)^{2} \sqrt{x - 1} \left(x + 3\right)^{2}}
f(x)=(x5)(x+3)((x5)(x+3)2(x1)2)2(x5)2x1(x+3)2f^{\,\prime}(x)=\frac{\sqrt{\left(x - 5\right) \left(x + 3\right)} \left(\left(x - 5\right) \left(x + 3\right) - 2 \left(x - 1\right)^{2}\right)}{2 \left(x - 5\right)^{2} \sqrt{x - 1} \left(x + 3\right)^{2}}

Integral

F(x)=x1(x5)(x+3)dxF(x) = \int \frac{\sqrt{x - 1}}{\sqrt{\left(x - 5\right) \left(x + 3\right)}}\, dx

Sign Table


Variation Table


Plot


Elapsed Time: 0.0039 seconds