NEW FUNCTION
Function Expression :
\[f(x)=ln(\frac{(x-1
)}{x}
) \]
Domain
\[\left]-\infty, 0\right[ \cup \left]1, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = 0 \]
\[\lim_{x \overset{<}{\rightarrow0} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow1} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 0 \]
\[ \]
Derivate
\[f^{\,\prime}(x)=\frac{x \left(\frac{1}{x} - \frac{x - 1}{x^{2}}\right)}{x - 1} \]
\[f^{\,\prime}(x)=\frac{1}{x \left(x - 1\right)} \]
\[ \]
Integral
\[F(x) = x \log{\left(1 - \frac{1}{x} \right)} - \log{\left(x - 1 \right)} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0322 seconds