NEW FUNCTION
Function Expression :
\[f(x)=-(\frac{(x^3+x^2-1
)}{x^2-1}
) \]
Domain
\[\left]-\infty, -1\right[ \cup \left]-1, 1\right[ \cup \left]1, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \overset{<}{\rightarrow-1} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow-1} }f(x) = -\infty \]
\[\lim_{x \overset{<}{\rightarrow1} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow1} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = -\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=- \frac{2 x \left(- x^{3} - x^{2} + 1\right)}{\left(x^{2} - 1\right)^{2}} + \frac{- 3 x^{2} - 2 x}{x^{2} - 1} \]
\[f^{\,\prime}(x)=\frac{x^{2} \cdot \left(3 - x^{2}\right)}{x^{4} - 2 x^{2} + 1} \]
\[ \]
Integral
\[F(x) = - \frac{x^{2}}{2} - x - \frac{\log{\left(x^{2} - 1 \right)}}{2} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0175 seconds