NEW FUNCTION
Function Expression :
\[f(x)=\frac{x^2.3x+3}{x-1} \]
Domain
\[\left]-\infty, 1\right[ \cup \left]1, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \overset{<}{\rightarrow1} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow1} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=\frac{9 x^{2}}{x - 1} - \frac{x^{2} \cdot 3 x + 3}{\left(x - 1\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{3 \left(- x^{3} + 3 x^{2} \left(x - 1\right) - 1\right)}{\left(x - 1\right)^{2}} \]
\[ \]
Integral
\[F(x) = x^{3} + \frac{3 x^{2}}{2} + 3 x + 6 \log{\left(x - 1 \right)} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0394 seconds