NEW FUNCTION

Function Expression :

\[f(x)=ln(\frac{2x+3}{x-2} ) \]

Domain

\[\left]-\infty, - \frac{3}{2}\right[ \cup \left]2, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = \log{\left(2 \right)} \]
\[\lim_{x \overset{<}{\rightarrow- \frac{3}{2}} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow2} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = \log{\left(2 \right)} \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{\left(x - 2\right) \left(\frac{2}{x - 2} - \frac{2 x + 3}{\left(x - 2\right)^{2}}\right)}{2 x + 3} \]
\[f^{\,\prime}(x)=\frac{7}{- 2 x^{2} + x + 6} \]
\[ \]

Integral

\[F(x) = x \log{\left(\frac{2 x}{x - 2} + \frac{3}{x - 2} \right)} + \frac{7 \log{\left(2 x + 3 \right)}}{2} - 2 \log{\left(\frac{2 x}{x - 2} + \frac{3}{x - 2} \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0217 seconds