NEW FUNCTION

Function Expression :

\[f(x)=\frac{2x2+2}{(x+1 )2} \]

Domain

\[\left]-\infty, -1\right[ \cup \left]-1, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = 2 \]
\[\lim_{x \overset{<}{\rightarrow-1} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow-1} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 2 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=4 \cdot \frac{1}{2} \cdot \frac{1}{x + 1} - \frac{2 x 2 + 2}{2 \left(x + 1\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{1}{\left(x + 1\right)^{2}} \]
\[ \]

Integral

\[F(x) = 2 x - \log{\left(x + 1 \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0128 seconds