NEW FUNCTION
Function Expression :
\[f(x)=e(\frac{x-1}{x+2}
) \]
Domain
\[\left]-\infty, -2\right[ \cup \left]-2, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = e \]
\[\lim_{x \overset{<}{\rightarrow-2} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow-2} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = e \]
\[ \]
Derivate
\[f^{\,\prime}(x)=- \frac{e \left(x - 1\right)}{\left(x + 2\right)^{2}} + \frac{e}{x + 2} \]
\[f^{\,\prime}(x)=\frac{3 e}{\left(x + 2\right)^{2}} \]
\[ \]
Integral
\[F(x) = e x - 3 e \log{\left(x + 2 \right)} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0360 seconds