NEW FUNCTION

Function Expression :

\[f(x)=e^{\sqrt{2}.ln x} \]

Domain

\[\left]-\infty, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = +\infty \operatorname{sign}{\left(\left(-1\right)^{\sqrt{2}} \right)} \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{\sqrt{2} x^{\sqrt{2}}}{x} \]
\[f^{\,\prime}(x)=\sqrt{2} x^{-1 + \sqrt{2}} \]
\[ \]

Integral

\[F(x) = \frac{x^{1 + \sqrt{2}}}{1 + \sqrt{2}} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0913 seconds