NEW FUNCTION
Function Expression :
\[f(x)=e^{\sqrt{2}.ln x} \]
Domain
\[\left]-\infty, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = +\infty \operatorname{sign}{\left(\left(-1\right)^{\sqrt{2}} \right)} \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=\frac{\sqrt{2} x^{\sqrt{2}}}{x} \]
\[f^{\,\prime}(x)=\sqrt{2} x^{-1 + \sqrt{2}} \]
\[ \]
Integral
\[F(x) = \frac{x^{1 + \sqrt{2}}}{1 + \sqrt{2}} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0913 seconds