NEW FUNCTION
Function Expression :
\[f(x)=\frac{(x^3+2x^2-7x+4
)}{(x+1
)^2} \]
Domain
\[\left]-\infty, -1\right[ \cup \left]-1, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = -\infty \]
\[\lim_{x \overset{<}{\rightarrow-1} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow-1} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=\frac{\left(- 2 x - 2\right) \left(x^{3} + 2 x^{2} - 7 x + 4\right)}{\left(x + 1\right)^{4}} + \frac{3 x^{2} + 4 x - 7}{\left(x + 1\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{x^{3} + 3 x^{2} + 11 x - 15}{x^{3} + 3 x^{2} + 3 x + 1} \]
\[ \]
Integral
\[F(x) = \frac{x^{2}}{2} - 8 \log{\left(x + 1 \right)} - \frac{12}{x + 1} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0203 seconds