NEW FUNCTION

Function Expression :

\[f(x)=(x-1 ).ln(x ) \]

Domain

\[\left]0, \infty\right[ \]

Limits

\[\lim_{x \overset{>}{\rightarrow0} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\log{\left(x \right)} + \frac{x - 1}{x} \]
\[f^{\,\prime}(x)=\log{\left(x \right)} + 1 - \frac{1}{x} \]
\[f^{\,\prime}(x)=\frac{x \log{\left(x \right)} + x - 1}{x} \]

Integral

\[F(x) = \frac{x^{2} \log{\left(x \right)}}{2} - \frac{x^{2}}{4} - x \log{\left(x \right)} + x \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0502 seconds