NEW FUNCTION

Function Expression :

\[f(x)=ln(\frac{x}{x+9} ) \]

Domain

\[\left]-\infty, -9\right[ \cup \left]0, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = 0 \]
\[\lim_{x \overset{<}{\rightarrow-9} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow0} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 0 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{\left(x + 9\right) \left(- \frac{x}{\left(x + 9\right)^{2}} + \frac{1}{x + 9}\right)}{x} \]
\[f^{\,\prime}(x)=\frac{9}{x \left(x + 9\right)} \]
\[ \]

Integral

\[F(x) = x \log{\left(\frac{x}{x + 9} \right)} - 9 \log{\left(x + 9 \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0349 seconds